脂肪肝の研究をする手伝い 脂肪肝の説明を専門家から聞く 2023


2023年4月 脂肪肝の研究をする手伝いを始めた。脂肪肝の説明を専門家から聞きました。脂肪肝のマウスを飼って治療法を研究してる大学教授のお手伝いです。


アルコールを飲んで脂肪肝になるのは、まぁ分かる。

アルコール飲まないのに脂肪肝になる人が意外と多いのが謎だという。

アルコール飲まないのに脂肪肝になるひとをNASHと呼ぶらしい。

ノンアルコールな脂肪肝。


どうしてNASHになるか?が謎だけど糖尿病や高脂血症の薬である程度は治療できる。

全国で100万人以上NASH患者さんがいるので治療法がすごく求められてる。

基本的には運動をしっかりして下さい、と医者も半分諦めてるような状態なんです。たしかにNASHのキーワードで記事を探して読むと、原因やなぜなるか?も分からないことばかり。


今までの運動が良いという唯一の確かな治療も、なぜ運動が良いのか?は分からないらしい。


自律神経の交感神経と副交感神経のバランスが肝臓に関係するらしい。


また、血管を広げるビタミンEも肝臓の薬としてはまぁまぁ定番らしい。


他にはレバーだから鉄分が肝臓に溜まりがち。鉄分が多すぎると肝臓に良くないらしい。若い女性にはNASHは少ないという。女性は生理で血液が体外に出るのが肝臓にとっては良いことかも?という人もいる。


鉄分といえば、お茶を飲むと鉄分不足になる場合がある。緑茶が肝臓に良いって研究もあるらしい。


運動についても、有酸素運動は鉄分が汗で流れ出るという説もある。鉄分過多がNASHの原因なのかね?


鉄も赤血球のヘム鉄と肝臓のフェリチン鉄とで違いがあるらしい。


肝臓を悪くして脂肪肝から肝硬変までなると治らない。さらに悪くなると肝臓がんになってしまう。


肝臓はすごく大事な臓器だから肝臓がんだからといって全摘すれば良いってならない。

肝臓は血液検査やらでしっかり健診しとかないと自覚症状なしで悪くなる。


仕事に関係して、これからの高齢化な日本人の中心的な健康の話題の専門家に話を聞けて、ラッキーです。


現在進行形でNASHを研究して臨床も見てる先生だから、健康に役立つ大発見を間近で見られるんじゃないか?と期待してます。


まとめ


アルコール飲まない脂肪肝をNASHという


NASHは原因不明でマウスで研究中


自律神経、血管、鉄分、ビタミンEが関係するキーワード

SrBi2Ta2O9強誘電体 未来計算メモリデバイス◆物理学


SrBi2Ta2O9強誘電体メモリを創ろうとして1996年頃、研究した。 誘電体をコンピューターのメモリに応用するのは、ずいぶん昔から考えられていた。 

 今でも、その可能性を信じている人もいる。誘電体は絶縁性セラミックのことで、電気を通さないのが当たり前のようなセラミックも極限まで薄くすると電気が流れてしまう。 

 なぜか??これは難しい。 

 原因は、薄い膜になっているセラミックの粒子の大きさと膜の厚さがほぼ同じぐらいになってしまうから。 
 これも、理由にはなってないけど薄くすると、粒子と粒子の間の一部に電気を流しやすい部分ができる。 元のセラミック粒子はビスマスや鉛を含むからか? 
 部分的に還元されて電子を運びやすい状態になるんだろうと思う。 ビスマスや鉛を含まないセラミックなら良さそうだけど、SrNbTaOのようなセラミックが強誘電体薄膜として メモリになったという話はまだ、聞いてない。 

 単なるDRAMならTa2O5薄膜でいいじゃん。という声もある。 Ta2O9にSrとNbを混ぜていけば強誘電体になるかというと、結晶構造が問題になってくる。要するに単なる混ぜただけでは強誘電体にならない。 高温で焼いて結晶構造がしっかりしてくると、強誘電性が現れる。 

 じゃあ、高温で焼けばいいだけか?? いやいやシリコンの部品は800度での焼成でも壊れる寸前である。 低温で焼成して強誘電体になる材料、できる作成法を世界中でさがしている。 なぜ、焼くと強誘電体になるかは、強誘電体が高温で安定な相だから。 と同時に表面積を小さくするために粒子が大きくなることで安定になるから。 セラミック膜は丁寧につくってもきれいにできない。 焼くという過程があるから、粒粒は大きくなるし、でこぼこは大きくなる。 高温に耐えるなら周りの金属は白金を中心とした貴金属を使わざるを得ない。 


 視点を変えて、グラフェンを使ったメモリはどうか? グラフェンは作り方によっては絶縁体にもなると信じられていたが、 シリコンや白金などを使う従来の半導体プロセスで使うと、電気が通りやすい性質しか現れず、高集積メモリに使いづらいらしい。

 https://nanonet.nims.go.jp/modules/news/article.php?a_id=945 

 グラフェンメモリはフレキシブルなメモリに使えるとのこと。 

 磁性をもった薄膜はどうか?? 金属ならHDDで完成されている技術だが、MRAMならどうか?? ドット型のHDDなら大容量にできるらしいが、ディスクではなく、メモリとしてつかうから、どんな構造なんだろう。 

 DRAMを超えることを目標にするなら、50ナノメーターぐらいの厚さ。100ナノメーター角ぐらいのドット。トンジスタは30ナノメーターテクノロジが実用化されていることを考えると、もっともっと小さなドットが目標かな。 

 ドットが20ナノメータ程度のドットになってくるとはたして磁性を持つのか? 磁性という物理現象に量子効果が影響してくる。 ハードな磁性、ソフトな磁性などいろいろあるけど、鉄が磁性の基礎である。 酸化物で磁性をつくってナノドットに仕上げるのは、上記の強誘電体の時の失敗で、非常に難しいことがある意味、証明済み。 材料が違うし、条件も違うから、やってみたらできるのかもしれないけど。 

 スパッタリングなどの物理めっき法で作る磁性ドットをメモリに応用できるんか? 


 シリコン半導体以原理を用いたコンピューター。 
 DNAや冷却を利用するコンピューターが例に挙がる。 

 DNAは4種類しかないので単純なコンピューターになりそうだが、スーパーコンピューターよりはるかに速く解を見つけることができるらしい。 冷却量子コンピューターも同様に複雑な計算が速い。 いずれにしても小さく加工していくことで計算デバイスが実現できる。

シリコン加工技術の延長上に微細なコンピュターが開発される可能性が高い。 30nmという加工精度が物理的な限界であるので、単純に小さくするだけではいけない。 新しい原理を導入することで複雑な計算を手のひらサイズのコンピュータがする時代がくる。 計算原理と材料工学の融合が進まないといけない。 

 複雑化したそれぞれの工学を理解するには、橋渡しが必要になる。 

 ごく単純化したアイディアでは、ナノドットを並べた基板を計算素子として ドットそれぞれに周波数を与える。それぞれを電磁気的に震えさせる それを極低温に冷していくと相互作用で、止まるべき振動が止まり、それぞれの持つ周波数のなかで残った成分が、解になる。 

 行列からの類推からしたんだが、 周波数の異なるドットの中から次第に現れるまだら模様の図形をスキャニングで読みとって図形から解を再計算する。

 計算メモリとディスク融合のような状態だね。
 計算するHDD。 

 マイナス200度ぐらいで、現れる超電導がリニアモーターとして実用化される今日だ。 マイナス200度ぐらいで現れる物理現象を計算に応用する日は近い。 

 ディスクのように回転は必要か?? タッピングモードのスキャニングトンネル電流顕微鏡(STM)のような針がそれぞれの小さなエリアを担当して、それが集まって計算する。

 小さなエリアは誘電体の動く範囲(圧電性)が限界になる。 およそ、10ナノドットの一つひとつを検出しながらタッピングしてうごく針とは、100分の1ぐらいの精度として、1ミクロンぐらいの範囲かな。 

 なんだか、どこまで空想でどこまで理論的なのかわかんない。 

 写真は、結晶粒子とキャパシタ構造をブロック氷とアルミ箔で模擬モデル化。 塩を振った氷。導電性が氷表面にある。



アルミ空気電池とアルミ銅電池 自作


アルミニウム空気電池は、 簡単に自作できる教材としては優れているが、 アルミニウム金属を材料とする点で、 電気を効率よく貯めているとは言えないようだ。 アルミニウム空気電池の副産物であるアルミニウム水酸化物などを 回収して金属アルミニウムに戻すのに電気が大量に必要だからという理由がある。 二次電池化して充電できるアルミ空気電池電池も一部開発されているようだが、 高度すぎて真似できない。 電圧を上げようとするのは材料的に難しい。 電流を上げるためには、シャープペンシルを使っている限り炭素の表面積は一定である。 アルミニウムの表面積を増やすことがカギになると思って、 アルミをたくさん使ってみても電流は伸びない。 炭素棒ではなく、銅箔を正極にする方が 電流は多く流れる。 つまり、アルミ空気電池よりもアルミ銅電池の方が、電流が稼ぎやすい。 1)硫酸銅と塩酸の溶液に亜鉛と銅箔を突っ込んで電池にすると、銅が正極の電池になる。 2)硫酸銅と塩酸の溶液にアルミ箔と銅箔を突っ込んで電池にすると、銅が正極の電池になる。 3)硫酸銅と塩酸の溶液に炭素(シャープペンシル芯)と銅箔を突っ込んで電池にすると、銅が負極の電池になる。 4)硫酸銅と塩酸の溶液に炭素(シャープペンシル芯)とアルミ箔を突っ込んで電池にすると、アルミ箔が負極の電池になる。 以上の電池を酸化還元電位を基にまとめると、 アルミ、-1.6 亜鉛、-0.7 水素、0 標準水素電位(V) 銅、+0.3 ヨウ素、+0.5 酸素、+1.2 という文献値がある。 +Cu/Zn-(1.0V) +Cu/Al-(1.9V) +O2/Cu-(0.9V) +O2/Al-(2.9V) という電池特性を計算上はもつ。 銅は正極になったり負極になったりするが、 アルミは常に負極です。卑金属だからね。 昨日は、空気アルミ電池が電圧を稼ぐときには一番いいと思えたけれど、 電流が欲しいときには、電極面積が大きくしやすいアルミ銅電池もいいね。 素焼きで仕切ってるとダニエル電池風で電圧が稼げる。 仕切らずに溶液で電池を組むとボルタ電池風で簡単。 電解液でティッシュを湿らせて電極で挟み込むことも簡単に乾電池風にできます。 酸化剤であるH2O2を電解液に混ぜるのが、簡単にできる電流アップ法。 http://sai.ooiso.net/r19/990818/000.html 備長炭と銅で実測0.48V 備長炭とアルミで実測0.98V 銅とアルミで0.51V というデータが載ってました。 電圧は、アルミ空気が一番大きいというのは理論とも私の実験とも一致してます。 電解質では、OH-とH+は特に大きな働きをします。 中性とアルカリ性と酸性では、輸率変わります。 中性でもっとも低くなって、電流が流れにくいです。 銅アルミ電池では食酢や塩酸では電流値が大きくなります。 銅が析出してアルミが溶けるという単純な機構を考えると、 酸によってアルミが溶けやすくなるんでしょうね。 アルミを溶かすには出来たら酸化性の酸にしたいところです。 これもH2O2を加える理由でしょう。 両性金属のアルミを溶かすには、アルカリにする方法もあります。 電解液にKOH,NaOHを使うのもアルカリ電池としていいのかもしれません。 アルカリの方が扱いが難しいので、 酸性電池を作る方がよさそうですね。 いずれにしてもpHが7から遠いところで電解質が働きやすいというのも 電池特性と関係してますね。 2023年3月 寒天で炭素粉と塩水を固めて電池自作していた。

アクリル樹脂スポンジ状に作り替えるリサイクル技術 大阪大学の宇山浩教授


 アクリル樹脂のスポンジの新技術に注目していた。




ダイム誌で技術記事発見。
アクリル樹脂を溶かしてスポンジ状に作り替えるリサイクル技術を大阪大学の宇山浩教授が発見。


アクリル樹脂は70年の歴史がある古典的化学樹脂。

それが水とアルコール混合液に溶ける。アクリルを粉末化してから溶かす。粉末の粒の大きさは不明。
温めて溶けた液体を室温で放置すると0.3ミクロン(300ナノ)の粒子が連なる多孔体になる。
成形が自由なので吸着剤としても期待できる。

一言その1

溶けたのかなあ?粉末化で細かくなって、溶液にコロイド状になってるんじゃないかなあ。
まあ、理論は重要じゃないのかな。

その2

吸着剤として使うときの使用環境が狭いんじゃない?熱さや薬品に対して弱いと使いづらいんじゃ?

その3

リサイクル後のアクリルの用途を考えるのが、これから楽しみですね。


その4
アクリルだけじゃなくてあらゆる素材が似たような手法で多孔体スポンジ状になるんじゃないかな。
リサイクルと省資源って大事だからね。
その5
車のボディーがスポンジならへこまないのに!って思った。